Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
FASEB J ; 34(9): 12991-13004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777143

RESUMO

Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.


Assuntos
Cálcio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Feto , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Miócitos de Músculo Liso/citologia , Sistema Respiratório/embriologia
2.
Clin Perinatol ; 47(2): 211-222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32439108

RESUMO

Aerodigestive disorders, those affecting the upper and lower airway or upper gastrointestinal tract, are interrelated anatomically during fetal development and functionally after birth. Successful respiration and feeding requires careful coordination to promote effective swallowing and prevent aspiration. I describe the epidemiology, including the prevalence of the most common aerodigestive disorders. The ability of an infant to feed by mouth at discharge, without a surgically placed feeding tube, is an important neurodevelopmental marker. Therefore, aerodigestive disorders have a high potential for lifelong morbidities and health care expenditures. When available, published research on related medical costs for these disorders is provided.


Assuntos
Efeitos Psicossociais da Doença , Gastroenteropatias/congênito , Gastroenteropatias/epidemiologia , Transtornos Respiratórios/congênito , Transtornos Respiratórios/epidemiologia , Humanos , Recém-Nascido , Prevalência , Sistema Respiratório/embriologia , Sistema Respiratório/fisiopatologia , Trato Gastrointestinal Superior/embriologia , Trato Gastrointestinal Superior/fisiopatologia
3.
Subcell Biochem ; 95: 151-174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297299

RESUMO

Retinoic acid (RA), the bioactive metabolite of vitamin A (VA), has long been recognized as a critical regulator of the development of the respiratory system. During embryogenesis, RA signaling is involved in the development of the trachea, airways, lung, and diaphragm. During postnatal life, RA continues to impact respiratory health. Disruption of RA activity during embryonic development produces dramatic phenotypes in animal models and human diseases, including tracheoesophageal fistula, tracheomalacia, congenital diaphragmatic hernia (CDH), and lung agenesis or hypoplasia. Several experimental methods have been used to target RA pathways during the formation of the embryonic lung. These have been performed in different animal models using gain- and loss-of-function strategies and dietary, pharmacologic, and genetic approaches that deplete retinoid stores or disrupt retinoid signaling. Experiments utilizing these methods have led to a deeper understanding of RA's role as an important signaling molecule that influences all stages of lung development. Current research is uncovering RA cross talk interactions with other embryonic signaling factors, such as fibroblast growth factors, WNT, and transforming growth factor-beta.


Assuntos
Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pneumopatias/embriologia , Pneumopatias/metabolismo
4.
Brain Res Bull ; 152: 107-116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301380

RESUMO

Pax6 is an important transcription factor expressed in several discrete domains of the developing central nervous system. It has been reported that Pax6 is involved in the specification of subtypes of hindbrain motor neurons. Pax6 homozygous mutant (rSey2/rSey2) rats die soon after birth, probably due to impaired respiratory movement. To determine whether the respiratory center in the medulla functions normally, we analyzed the histological and neurophysiological properties of the medulla and spinal cord in fetal rats with this mutation. First, the medulla of rSey2/rSey2 at embryonic (E) 21.5-E22.5 tended to be smaller than those from heterozygous mutant (rSey2/+) and wild-type (+/+) littermates. Through immunohistochemical analysis, we confirmed normal distribution of Phox2b-expressing cells in the parafacial respiratory group (pFRG) of rSey2/rSey2 rats. Expression of neurokinin-1 receptor (NK-1R) was weak and dispersed in rSey2/rSey2 rats. In addition, rSey2/rSey2 rats have a defect of the hypoglossal nerve root. Electrophysiological analysis using brainstem-spinal cord preparations (E21.5-E22.5) revealed that rSey2/rSey2 rats showed larger fluctuation of the amplitude of inspiratory activity monitored from the fourth cervical root although there was no significant difference in the respiratory rate among rSey2/rSey2, rSey2/+, and +/+ littermates. The response of respiratory rhythm to high CO2 was similar among all genotypes. Optical recordings of neuronal activity revealed that the activity of the pFRG tended to be weaker and inspiratory activity appeared in more scattered areas in the caudal ventral medulla in the rSey2/rSey2 rats. These results suggest that the basal activity of the respiratory system was preserved with mild impairment of the inspiratory activity in the rSey2/rSey2 rats and that the Pax6 gene is involved in the functional development of the neuronal system producing effective inspiratory motor outputs for survival.


Assuntos
Fator de Transcrição PAX6/genética , Sistema Respiratório/embriologia , Sistema Respiratório/inervação , Animais , Animais Recém-Nascidos , Tronco Encefálico/metabolismo , Feminino , Feto , Proteínas de Homeodomínio/metabolismo , Masculino , Bulbo/metabolismo , Neurônios Motores/metabolismo , Fator de Transcrição PAX6/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Respiração , Centro Respiratório/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo
5.
Nat Rev Mol Cell Biol ; 20(9): 551-566, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217577

RESUMO

The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.


Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Regeneração , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/embriologia , Animais , Humanos , Consumo de Oxigênio/fisiologia
7.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135307

RESUMO

The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia Intravital/métodos , Sistema Respiratório/diagnóstico por imagem , Animais , Animais Recém-Nascidos , Embrião não Mamífero , Coração/embriologia , Coração/crescimento & desenvolvimento , Imageamento Tridimensional/instrumentação , Microscopia Intravital/instrumentação , Luz , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Modelos Animais , Morfogênese , Sistema Respiratório/embriologia , Sistema Respiratório/crescimento & desenvolvimento , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos
8.
Genetics ; 209(2): 367-380, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29844090

RESUMO

The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.


Assuntos
Drosophila/embriologia , Morfogênese , Sistema Respiratório/embriologia , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Respiratório/crescimento & desenvolvimento , Sistema Respiratório/metabolismo
9.
Dev Cell ; 44(3): 313-325.e5, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337000

RESUMO

Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.


Assuntos
Divisão Celular , Células Epiteliais/citologia , Fenômenos Mecânicos , Morfogênese/fisiologia , Sistema Respiratório/citologia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Camundongos , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo
10.
Pesqui. vet. bras ; 38(1): 154-166, Jan. 2018. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-895553

RESUMO

The rhea (Rhea americana) is an important wild species that has been highlighted in national and international livestock. This research aims to analyse embryo-foetal development in different phases of the respiratory system of rheas. Twenty-three embryos and foetuses were euthanized, fixed and dissected. Fragments of the respiratory system, including the nasal cavity, larynx, trachea, syrinx, bronchi and lungs, were collected and processed for studies using light and scanning electron microscopy. The nasal cavity presented cubic epithelium in the early stages of development. The larynx exhibited typical respiratory epithelium between 27 and 31 days. The trachea showed early formation of hyaline cartilage after 15 days. Syrinx in the mucous membrane of 18-day foetuses consisted of ciliated epithelium in the bronchial region. The main bronchi had ciliated epithelium with goblet cells in the syringeal region. In the lung, the parabronchial stage presented numerous parabronchi between 15 and 21 days. This study allowed the identification of normal events that occur during the development of the rhea respiratory system, an important model that has not previously been described. The information generated here will be useful for the diagnosis of pathologies that affect this organic system, aimed at improving captive production systems.(AU)


A ema (Rhea americana) representa importante espécie silvestre que vem se destacando na pecuaria nacional e internacional. Esta pesquisa objetiva analisar o desenvolvimento embrionário-fetal, em diferentes fases, do sistema respiratório de emas. Vinte e três embriões e fetos foram eutanasiados, fixados e dissecados. Fragmentos do sistema respiratório: cavidade nasal, laringe, traqueia, siringe, brônquios e pulmões, foram coletados e processados para estudos por meio de microscopia de luz e microscopia eletrônica de varredura. A cavidade nasal apresentou, nas primeiras fases de desenvolvimento, epitélio estratificado cúbico. A laringe exibiu epitélio respiratório típico entre 27 e 31 dias. A traqueia aos 15 dias apresentou início de formação da cartilagem hialina. Na siringe a túnica mucosa de fetos de 18 dias e formada por epitélio estratificado ciliado na região bronquial. Os brônquios principais apresentavam epitélio estratificado ciliado com células caliciformes na região siringeal. No pulmão, o estágio parabronquial apresentou numerosos parabrônquios entre 15 a 21 dias. Este estudo permitiu a identificação de eventos normais que ocorrem durante o desenvolvimento do sistema respiratório de emas, importante modelo ainda não descrito. As informações geradas serão úteis para o diagnóstico de patologias que acometem este sistema orgânico, visando a melhoria dos sistemas de produção em cativeiro.(AU)


Assuntos
Animais , Sistema Respiratório/anatomia & histologia , Sistema Respiratório/crescimento & desenvolvimento , Sistema Respiratório/embriologia , Reiformes/embriologia , Organogênese
11.
Development ; 144(19): 3547-3561, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827394

RESUMO

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fosfoproteínas/metabolismo , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Cartilagem/embriologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Cruzamentos Genéticos , Diafragma/inervação , Diafragma/metabolismo , Diafragma/ultraestrutura , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Homeodomínio/genética , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos/genética , Fosfoproteínas/genética , Mucosa Respiratória/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Traqueia/embriologia , Traqueia/metabolismo , Fatores de Transcrição
12.
Am J Respir Cell Mol Biol ; 57(4): 403-410, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28481637

RESUMO

Hydrogen sulfide (H2S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H2S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H2S is catalyzed by cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H2S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H2S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H2S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H2S donors for clinical therapeutic applications.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Sistema Respiratório , Infecções Respiratórias , Transdução de Sinais , Viroses , Animais , Cistationina beta-Sintase/biossíntese , Cistationina gama-Liase/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Especificidade de Órgãos , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Infecções Respiratórias/embriologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Viroses/embriologia , Viroses/metabolismo , Viroses/patologia , Viroses/virologia
13.
PLoS One ; 12(2): e0171912, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222099

RESUMO

Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.


Assuntos
Glicoproteínas de Membrana/deficiência , Odontogênese/fisiologia , Animais , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Células Cultivadas , Dentina/embriologia , Dentina/metabolismo , Técnicas de Inativação de Genes , Genes Reporter , Rim/embriologia , Rim/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/metabolismo , Odontogênese/genética , Especificidade de Órgãos , Podócitos/metabolismo , Podócitos/ultraestrutura , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Estresse Mecânico , Germe de Dente/embriologia , Germe de Dente/metabolismo , Transgenes
14.
Pediatr Res ; 81(2): 376-383, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27925619

RESUMO

BACKGROUND: Premature infants are at increased risk for airway diseases, such as wheezing and asthma, because of early exposure to risk factors including hyperoxia. As in adult asthma, airway remodeling and increased extracellular matrix (ECM) deposition is involved. METHODS: We assessed the impact of 24-72 h of moderate hyperoxia (50%) on human fetal airway smooth muscle (fASM) ECM deposition through western blot, modified in-cell western, and zymography techniques. RESULTS: Hyperoxia exposure significantly increased collagen I and collagen III deposition, increased pro- and cleaved matrix metalloproteinase 9 (MMP9) activity, and decreased endogenous MMP inhibitor, TIMP1, expression. Hyperoxia-induced change in caveolin-1 (CAV1) expression was assessed as a potential mechanism for the changes in ECM deposition. CAV1 expression was decreased following hyperoxia. Supplementation of CAV1 activity with caveolar scaffolding domain (CSD) peptide abrogated the hyperoxia-mediated ECM changes. CONCLUSION: These results demonstrate that moderate hyperoxia enhances ECM deposition in developing airways by altering the balance between MMPs and their inhibitors (TIMPs), and by increasing collagen deposition. These effects are partly mediated by a hyperoxia-induced decrease in CAV1 expression. In conjunction with prior data demonstrating increased fASM proliferation with hyperoxia, these data further demonstrate that hyperoxia is an important instigator of remodeling in developing airways.


Assuntos
Matriz Extracelular/metabolismo , Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Sistema Respiratório/embriologia , Remodelação das Vias Aéreas , Asma/terapia , Caveolina 1/metabolismo , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Fenótipo , RNA Interferente Pequeno/metabolismo , Sistema Respiratório/efeitos dos fármacos , Fatores de Risco , Transdução de Sinais , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
15.
Arthropod Struct Dev ; 45(6): 562-584, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693811

RESUMO

Light and transmission electron microscopy were used to study the development of book lungs in embryos of the spider Parasteatoda tepidariorum. There is a bilateral cluster of temporary lamellae that form just posterior to the second opisthosomal (O2) limb buds. These lamellae are replaced by advanced embryo (AE) book lungs that continue into postembryonic stages. Results herein agree with earlier suggestions that the O2 limb buds become the AE book lungs. Each O2 limb bud merges with the ventral surface of the O2 segment, where the limb bud/book lung is internalized by covering with epidermis. A strand of tissue (entapophysis) from the epidermis at the posterior opisthosoma provides precursor cells for the book lung lamellae, and possibly entapophysis cells induce limb bud cells to align and produce lamellae. Electron micrographs show the different modes (I-III) of lumen formation. The result is a spiracle, atrium and alternating air and hemolymph channels. A hypothesis is presented for the role of precursor cell polarity in producing the planar tissue polarity of the channels. Some type of apical/apical affinity results in air channels, while basal/basal affinity results in hemolymph channels. Strong basal/basal affinity is likely as opposed cells in hemolymph channels extend basal processes that span the channel and start pillar trabeculae that continue in postembryonic stages.


Assuntos
Sistema Respiratório/embriologia , Aranhas/ultraestrutura , Animais , Polaridade Celular , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário , Microscopia Eletrônica de Transmissão , Muda , Sistema Respiratório/ultraestrutura , Aranhas/embriologia , Aranhas/crescimento & desenvolvimento
16.
J Exp Biol ; 219(Pt 7): 1076-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896537

RESUMO

Physiological plasticity of early developmental stages is a key way by which organisms can survive and adapt to environmental change. We investigated developmental plasticity of aspects of the cardio-respiratory physiology of encapsulated embryos of a marine gastropod, Littorina obtusata, surviving exposure to moderate hypoxia (PO2 =8 kPa) and compared the development of these survivors with that of individuals that died before hatching. Individuals surviving hypoxia exhibited a slower rate of development and altered ontogeny of cardio-respiratory structure and function compared with normoxic controls (PO2 >20 kPa). The onset and development of the larval and adult hearts were delayed in chronological time in hypoxia, but both organs appeared earlier in developmental time and cardiac activity rates were greater. The velum, a transient, 'larval' organ thought to play a role in gas exchange, was larger in hypoxia but developed more slowly (in chronological time), and velar cilia-driven, rotational activity was lower. Despite these effects of hypoxia, 38% of individuals survived to hatching. Compared with those embryos that died during development, these surviving embryos had advanced expression of adult structures, i.e. a significantly earlier occurrence and greater activity of their adult heart and larger shells. In contrast, embryos that died retained larval cardio-respiratory features (the velum and larval heart) for longer in chronological time. Surviving embryos came from eggs with significantly higher albumen provisioning than those that died, suggesting an energetic component for advanced development of adult traits.


Assuntos
Adaptação Fisiológica/fisiologia , Anaerobiose/fisiologia , Gastrópodes/embriologia , Gastrópodes/fisiologia , Coração/embriologia , Larva/fisiologia , Sistema Respiratório/embriologia , Animais , Hipóxia Celular , Desenvolvimento Embrionário , Oxigênio/metabolismo , Água do Mar
18.
Elife ; 42015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633813

RESUMO

Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway.


Assuntos
Diferenciação Celular , Drosophila/embriologia , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Fatores do Domínio POU/metabolismo , Sistema Respiratório/embriologia , Fatores de Transcrição/metabolismo
19.
Nat Cell Biol ; 17(12): 1569-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551273

RESUMO

In contrast to planes, three-dimensional (3D) structures such as tubes are physically anisotropic. Tubular organs exhibit a striking orientation of landmarks according to the physical anisotropy of the 3D shape, in addition to planar cell polarization. However, the influence of 3D tissue topography on the constituting cells remains underexplored. Here, we identify a regulatory network polarizing cellular biochemistry according to the physical anisotropy of the 3D tube geometry (tube cell polarization) by a genome-wide, tissue-specific RNAi screen. During Drosophila airway remodelling, each apical cellular junction is equipotent to establish perpendicular actomyosin cables, irrespective of the longitudinal or transverse tube axis. A dynamic transverse enrichment of atypical protein kinase C (aPKC) shifts the balance and transiently targets activated small GTPase RhoA, myosin phosphorylation and Rab11 vesicle trafficking to longitudinal junctions. We propose that the PAR complex translates tube physical anisotropy into longitudinal junctional anisotropy, where cell-cell communication aligns the contractile cytoskeleton of neighbouring cells.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Junções Intercelulares/metabolismo , Sistema Respiratório/citologia , Actinas/genética , Actinas/metabolismo , Remodelação das Vias Aéreas , Animais , Animais Geneticamente Modificados , Anisotropia , Comunicação Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/citologia , Larva/metabolismo , Masculino , Microscopia Confocal , Miosinas/genética , Miosinas/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Interferência de RNA , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(30): 9230-5, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170292

RESUMO

Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.


Assuntos
Epitélio/embriologia , Pulmão/embriologia , Animais , Padronização Corporal , Proliferação de Células , Colágeno/química , Combinação de Medicamentos , Elasticidade , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Laminina/química , Pulmão/metabolismo , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Técnicas de Cultura de Órgãos/métodos , Proteoglicanas/química , Sistema Respiratório/embriologia , Transdução de Sinais , Estresse Mecânico , Fatores de Tempo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...